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Abstract: Laser microbeam techniques are presented, which permit the introduction of 
molecules or small particles into living cells. Possible mechanisms − including 
photochemical, photothermal and opto-mechanical interactions (ablations) − are induced by 
continuous wave (cw) or pulsed lasers of different wavelength, power, and mode of operation. 
Laser-assisted optoporation permits the uptake of fluorescent dyes as well as DNA plasmids 
for cell transfection, and, in addition to its broad application to cultivated cells, may have 
some clinical potential. 
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1. Introduction 

Shortly after the invention of the laser by Theodore Maiman in 1960 scientists applied its 
light focusing properties to biological systems, e.g. living cells and tissues [1]. Numerous 
applications of the laser microbeam technique – including selective illumination of cell 
compartments or organelles, structural and functional studies, optical trapping and 
manipulation or microdissection – have been reported and summarized, e.g. in [2–4]. While 
laser microbeams are often used for measurement or imaging of biological parameters as well 
as for trapping or moving of cells in an optical tweezer system, the present mini-review is 
focused on micromanipulation or microdissection techniques for introducing molecules or 
small particles into a cell. Such techniques offer an alternative to injection via micro-needles, 
as summarized in [5,6], and appear promising where the mechanisms involved are reversible 
and where cell viability can be maintained. 

Often molecules or small vesicles are taken up by cells due to passive diffusion through 
the cell membrane or by endocytosis. Another possibility is active pumping of metabolites 
through membrane proteins. If, however, none these mechanisms work, laser microscopy 
techniques may support the uptake, e.g. of membrane impermeable fluorescent dyes or DNA 
plasmids. In the latter case genes of a foreign organism can be introduced into a native 
genome in order to modify the functional or fluorescent properties of a cell. This process is 
called transfection and represents a main application of laser-assisted optoporation. The 
mechanisms involved include photochemical, photothermal and opto-mechanical interactions 
(ablations), as described in the following section. 

2. Mechanisms 

Interaction of laser radiation with cells or tissues may vary depending on the wavelength of 
irradiation as well as on the light exposure. Fairly low light doses, around 100 J/cm2 in the 
visible or near ultraviolet spectral range, can induce photochemical interactions [7]. These 
doses increase considerably in the near infrared range, and if instead of whole cells only small 
areas around 1 µm2 are irradiated, light doses up to some hundred MJ/cm2 can be applied 
without photochemical cell damage [8]. Photochemical interactions are related to absorption 
by endogenous molecules with photosensitizing properties, e.g. nicotinamide adenine 
dinucleotide (NADH), flavins or porphyrins at wavelengths below 650 nm. In the near 
infrared range, photochemical damage is lower, however two-photon absorption by 
endogenous molecules and (one-photon) absorption by water should be considered as dose-
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of high-throughput optoporation [22]. Reducing the laser pulse duration down to 25 
femtoseconds increased the optoporation rate, thus confirming the importance of multiphoton 
effects for this mechanism [23]. Use of femtosecond lasers in combination with plasmonic 
gold nanoparticles further enhanced the efficiency of optoporation, since, due to an amplified 
localized electromagnetic field, the membrane permeability of human melanoma cells 
increased. Thus, a very high perforation rate of 70%, a transfection efficiency three times 
higher than for conventional lipofection and very low toxicity (<1%) were obtained [24]. 

When using a nanosecond Nd:YAG laser instead of a femtosecond laser, 25−30% of the 
cells were perforated at low light doses of 50 mJ/cm2 at 532 nm, or 1 J/cm2 at 1064 nm [25]. 
Targeting of diseased cells with functionalized gold nanoparticles contributed to an even 
more selective treatment of these cells [26]. It should be emphasized that upon application of 
femtosecond laser pulses, in addition to ablation, plasmonic photoionization [27] as well as 
thermal effects have also been described. A comparison of high repetition infrared laser 
pulses (1.55 µm) with cw laser irradiation of the same wavelength and average power showed 
that in the first case a temperature gradient was generated which was more favorable to 
permeabilization of cell membranes [28]. 

3. Applications 

For staining cells or organelles with fluorescent dyes, their passive diffusion through the cell 
membrane or uptake via specific carrier systems, e.g. micelles or liposomes, is commonly 
used. However, cell membranes are impermeable to certain actin-staining dyes, e.g. 
rhodamine phalloidin [29]. In this case, laser-assisted optoporation supports the cellular 
uptake of these dyes, permitting visualization of the cytoskeleton. Laser-assisted cell 
transfection – as an alternative process to lipofection, electroporation or viral transfection (as 
described e.g. in [30,31]) – probably represents the broadest field of application of laser 
optoporation. Use of liposomes as a carrier system for DNA plasmids is reported to support 
their delivery to the cell nucleus and increase the transfection rate [32]. It should be 
mentioned that laser-assisted optoporation has often been used in combination with a laser 
tweezer system, where cells or particles can be trapped and moved into the focus of a 
(second) laser beam [3], for precise localization or interaction with microparticles [33–35]. 

A first step towards clinical application is represented by the delivery of impermeable 
substances into retinal explants after ultrafast laser microbeam-assisted injection [36]. Further 
work by the same group includes optoporation of impermeable molecules to functional 
cortical neurons, leading to visualization of the actin network in the growth cone, as well as 
delivery of impermeable molecules into targeted retinal cells in a rat’s eye. This may improve 
visualization of the structure and function of the retina [37]. In vivo optoporation of retinal 
ganglion cells (RGCs) targeted with functionalized gold nanoparticles was used to label these 
cells specifically with fluorescent conjugates. This provides a novel approach to selectively 
targeting retinal cells in diseased regions while sparing neighboring healthy areas [38]. 
Furthermore, local ablation and injury to individual cells by a laser microbeam was used to 
study the calcium metabolism around epithelial wounds. Calcium influx was measured in two 
steps: first to the damaged cell and about 45 s later to adjacent cells, which may also have 
been damaged by a cavitation bubble. This demonstrated that multiple mechanisms may 
accompany the process of optoporation [39]. 

A laser microdissection and pressure catapulting technique (LMPC) has been developed 
[40] for the characterization of single cells and their diverse biomolecules. With LMPC, the 
force of focused laser light is utilized to excise selected cells or large tissue areas from object 
slides down to individual single cells and subcellular components like organelles or 
chromosomes. After microdissection, the sample is directly catapulted into an appropriate 
recipient vial. As this process works entirely without mechanical contact, it enables pure 
sample retrieval from a morphologically defined origin. LMPC has been successfully applied 
to isolate and catapult cells from histological tissue sections, from forensic material as well as 
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